GEI 4001 STEM and its Application on Language Acquisition and Communication

Lecturers

YEUNG Chi Ho Bill, MAN Mei Sum Agnes, CHOI Tat Shing Paul (SES, FLASS)

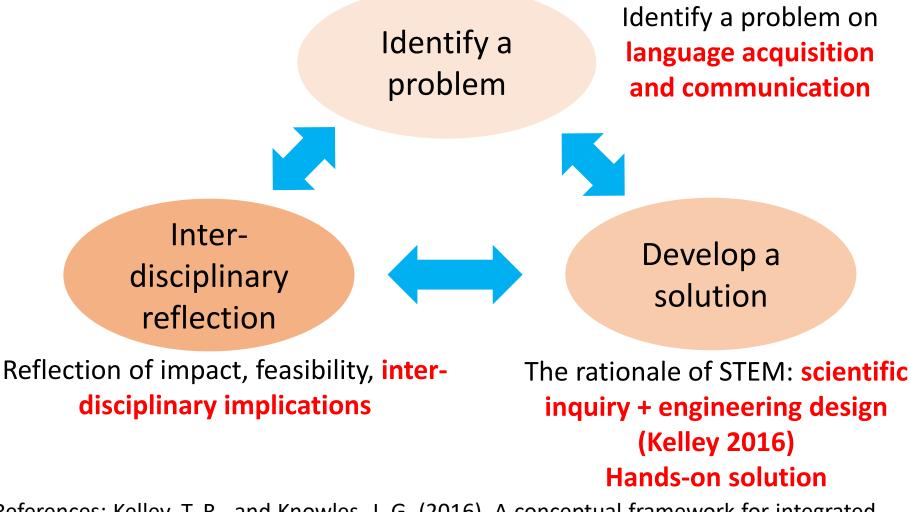
LAI Chi Shing, LI Zhen Jennie (CHL, FHM)

> TO Hing Kwan Alastair (PS, FEHD)

遊戲簡介

勇省打魔王

遊戲開始


Course Synopsis

- This interdisciplinary course offers participants the opportunities to understand and experience the major approaches of STEM, namely scientific inquiry and engineering design cycle, in solving crossdisciplinary problems in the field of language acquisition and communication. Through the course, participants
- 1. first **identify a problem** related to language acquisition and communication,
- 2. develop a solution by applying scientific inquiry and engineering design cycle,
- and finally reflect the impacts, feasibility, cultural and socioeconomic implications of the problem and the proposed solution in an interdisciplinary manner.
- Participants are required to disseminate their ideas, findings or products to experts in different areas, and are thus encouraged to integrate discipline-based knowledges in problem identification, solution development, dissemination and reflection, facilitating analyses on multi-disciplinary facets.

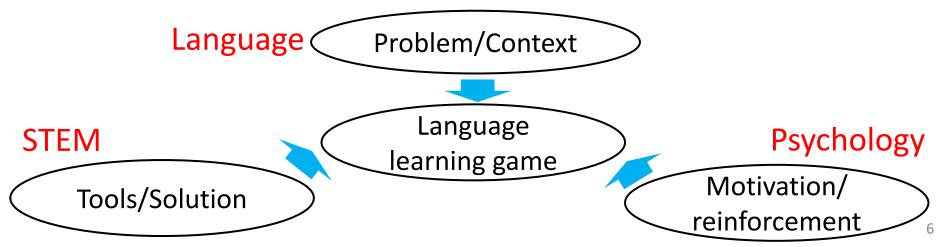
CILOs (and relation with GILOs)

- Course intended-learning outcomes (CILOs):
- 1. Understand the role of STEM in cross-disciplinary problems and experience STEM in problem solving
- 2. Analyze and identify problems related to language acquisition and communication
- **3. Develop potential solutions** to the identified problems through the application of scientific inquiry and engineering design cycle, namely the two solution approaches of STEM
- **4. Integrate interdisciplinary concepts** to analyze, disseminate and reflect their identified problem and developed solution from different angles
- GILOs: problem solving, critical thinking, oral communication skills, social interaction skills
- GELOs: knowledge, application and expression

Three Inter-connected Stages for Integration

References: Kelley, T. R., and Knowles, J. G. (2016). A conceptual framework for integrated STEM education. *International Journal of STEM Education*, *3*(1), 11.

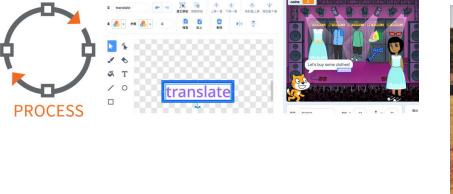
		Le	ctu	rer		
Week	Proposed Lesson Content	Bill YEUNG	Chi-Shing LAI	Alastair TO		
1	Introduction to STEM: scientific inquiry and engineering design cycle	\checkmark				
	Communication among co-lecturers on the learning outcomes of students	\checkmark	\checkmark	\checkmark	Co-planning	5 6
2	Understand language acquisition from the linguistic perspective	\checkmark	\checkmark		Co-teaching	problem
3	Problems in speaking, reading and writing from the linguistic perspective		\checkmark			ble
	Communication among co-lecturers on the learning outcomes of students	\checkmark	\checkmark	\checkmark	Co-planning	Ë G
4	Understand language acquisition and communication from the psychological perspective			~		
5	Problems in speaking, reading and writing from the psychological perspective			~		
	Communication among co-lecturers on the learning outcomes of students	\checkmark	\checkmark	\checkmark	Co-planning	ച
6	STEM Advances in the language word, e.g. AI for speech recognition	\checkmark				a solution
7	Hands-on workshop (1) – Creation of animation, language games	\checkmark				lut
8	Hands-on workshop (2) – Creation of language games, mobile app	\checkmark				ion
9	Student groups have consultation of proposal ideas simultaneously with 3 instructors	~	~	~	Co-guiding	
10	Students' proposal presentation: cross-disciplinary integration	\checkmark	\checkmark	\checkmark	Co-assessing	
	Discussion among co-lecturers on the guiding of students in the solution implementation/consultation period	~	~	~	Co-assessing	n di
11 - 12	Students work in group to implement and test their solution / Consultation with 3 instructors	~	~	~	Co-guiding	disciplinary reflection
13	Students' final project presentation: cross-disciplinary integration	✓	✓	\checkmark	Co-assessing	\ :ior
	Discussion among co-lecturers before marking students' final reports	\checkmark	\checkmark	\checkmark	Co-assessing	/ ~ ~


Identify a problem


Develop a solution

Inter-

Interdisciplinarity achieved?


- In GEI4001, we have very different disciplines: **STEM**, **Language**, **Psychology**
- Students are either from STEM, or language, or education, etc.
- Course design integration through product-making:
- 1. Provide students with knowledge from the three disciplines
- 2. Assessment: make a <u>language-learning game</u>, and a good product must well integrate the three disciplines (as we can see from the exemplar products)

Problem identified:

Disconnection between <u>language learning</u> and authentic application of language

Solving the problem:

Application of <u>STEM</u>: Application of design cycle, making a language learning game with Scratch Application of <u>Psychology</u>: how to motivate players to stay in the game (positive reinforcement)

Exemplar Student Product (1)

Application of Design Cycle:

https://scratch.mit.edu/projects/514075147/ 10

 In the reflective report, students reflect on their new understanding on language learning, psychological motivations, STEM and design cycle, and their <u>integration</u>:

Student 1

- After studying this course, I find that there are linkage between language, psychology and STEM. These 3 aspects are interrelated to each other.
- For instance, language acquisition problem can be solved by making a language game, but without support by psychology theories, the game will become boring
- Also, the knowledge of linguistic is important too
- STEM combines different aspects together to solve a particular problem
- Therefore, if we want to create a good game, all these 3 aspects cannot be omitted.

• Reflections on **personal gain**:

Student 2

- I am very grateful that I have stepped out of my comfort zone
- As a computer idiot, I never thought I learn how to code, let alone make a game by myself
- Credit to teachers' help and my perseverance, I finally succeeded in turning my ideas into real products, which I never thought of
- As long as we have perseverance, there is nothing in the world that we can't learn, but only things we do not want to learn.

Student 3

- Before studying this course, I was afraid that I cannot fulfil the task, as I am a language major student....
- Successfully making and creating a game makes me feel so happy, especially I have faced a lot of difficulties and challenges in the process

Where is the co-teaching?

			ectu	or		
Week	Proposed Lesson Content	Bill	Chi-Shing	Alastair		
1	Introduction to STEM: scientific inquiry and engineering design cycle	\checkmark				
	Communication among co-lecturers on the learning outcomes of students	\checkmark	✓	✓	Co-planning	
2	Understand language acquisition from the linguistic perspective	\checkmark	\checkmark		Co-teaching	
3	Problems in speaking, reading and writing from the linguistic perspective		\checkmark			
	Communication among co-lecturers on the learning outcomes of students	\checkmark	\checkmark	\checkmark	Co-planning	
4	Understand language acquisition and communication from the psychological perspective			~		
5	Problems in speaking, reading and writing from the psychological perspective			~		
	Communication among co-lecturers on the learning outcomes of students	\checkmark	\checkmark	\checkmark	Co-planning	
6	STEM Advances in the language word, e.g. AI for speech recognition	\checkmark				
7	Hands-on workshop (1) – Creation of animation, language games	\checkmark				
8	Hands-on workshop (2) – Creation of language games, mobile app	\checkmark				
9	Student groups have consultation of proposal ideas simultaneously with 3 instructors	~	~	~	Co-guiding	
10	Students' proposal presentation: cross-disciplinary integration	\checkmark	\checkmark	\checkmark	Co-assessing	Co-teaching
	Discussion among co-lecturers on the guiding of students in the solution implementation/consultation period	~	~	~	Co-assessing	happens
11 -	Students work in group to implement and test their solution /	✓			Co-guiding	here
12	Consultation with 3 instructors	V	ľ.	V .		
13	Students' final project presentation: cross-disciplinary integration	\checkmark	\checkmark	\checkmark	Co-assessing	
	Discussion among co-lecturers before marking students' final reports	\checkmark	\checkmark	\checkmark	Co-assessing	14

Co-teaching as Co-guiding

<u>Co-guiding 1</u>: Before proposal presentation

- Each student group has an individual consultation with all 3 instructors simultaneously, to share their initial ideas
- They receive suggestions from **3 perspectives**
- The 3 instructors also build on and supplement the suggestions from one another

<u>Co-guiding 2</u>: Proposal presentation

• All student groups present their proposals to all 3 instructors and their classmates, and receive constructive suggestions

<u>Co-guiding 3</u>: Working on project

 Student groups consult different instructors when they integrate different disciplines to their games

<u>Co-guiding 4</u>: Final project presentation

Co-assessing

GEI 4001 - STEM and its Application on Language Acquisition and Communication

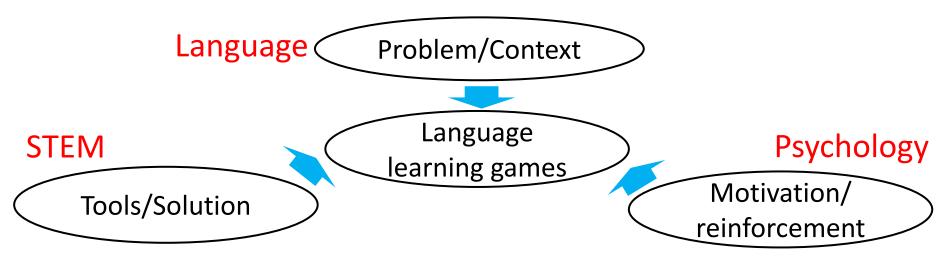
Assessment Rubric for <u>Assignment 1</u> - Project Proposal Presentation

	Outstanding	Good	Satisfactory	Pass	Fail
Significance of	Identifies a highly	Identifies a significant	Identifies a valid	Identifies a valid problem;	Identifies a non-
the identified	significant problem; well	problem; justifies the	problem; justifies only	provides no justification	valid problem;
problem	justifies the motivations	motivations	part of the problem		provides no
(CILO ₂)					justification
Interdisciplinary	Uses interdisciplinary	Uses multi-disciplinary	Uses multi-disciplinary	Uses a single disciplinary	Shows no analysis
analyses in terms	perspectives to analyze the	perspectives to analyze	perspectives to analyze	perspective to analyze the	on the problem
of language/	motivations; shows an in-	the motivations; shows a	the motivations; shows	motivations	and motivations
psychology/	depth analysis in each	good analysis in each	an analysis in each		
STEM	discipline and a clear	discipline and attempts	discipline but no		
(CELO2)	connection between	to connect disciplines	connection between		
	disciplines		disciplines		
Research on	A comprehensive review on	A good review on	A review on existing	A review on existing	No review on
existing solutions	existing solutions and their	existing solutions and	solutions	solutions, not necessarily	existing solutions
(CILO ₂)	discrepancy in tackling the	their discrepancy in		relevant to the problem	
	problem	tackling the problem			
Solution plan for	Describes the solution plan	Describes the solution	Describes the solution	Describes the solution plan	The solution plan
problem solving	in detail, with a strong	plan in detail, with a	plan, with a potential to	with missing essential	has no relevance to
(CILO ₁)	relevance to tackle the	potential to tackle the	tackle part of the problem	detail; relevance to the	the problem
	problem	problem		problem is not shown	
Creativity of the	Creative and well	Creative but share some	Resembles some existing	Modifies slightly from	Identical to
proposed solution	distinguished from existing	similarities with existing	solutions, but show clear	existing solutions	existing solutions
(CILO ₁)	solutions	solution	differences		
Presentation	Presents ideas with great	Presents ideas with	Presents ideas with	Presents ideas with very	Presents ideas
	lucidity and succinctness.	reasonable clarity.	limited soundness and	limited clarity or	poorly and
			clarity.	ambiguity.	ambiguously.

Co-assessing

- Individual rubrics are developed for each of the 3 assessments
- Proposal presentation All 3 instructors assess the proposal individually, but also share suggestions to students in a common discussion:

Bill	Significance and		Description of the making	Product completeness	Interdisciplina	Interdisciplina							
C	motivations of the identified	g and application of design cycle (10)	•	and	ry analyses of the product (10)	ry reflection on the process (10)	Presentation (10)	T-t-1	Demonstration	Gammant			
Group no.	problem (10)							Total mark (70)	Percentage	Comment			
Example	6	6	7	8	7	7	7	48	68.57142857	The problem ide	ntified is in	nportant, bι	it the grou
	7.5	5 9	10	9	8	7	8.5	59	84.28571429	The project has	conducted a	an evaluatio	on of the pr
	8	3 7	7.5	7	8.5	8	8	54	77.14285714	The idea is inter	esting, thou	ıgh it is diffi	cult to mat
	8	8 8	9.5	10	8	7	9	59.5	85	The product is fi	nished to a	high standa	ard and cor
	9.5	5 7	8	8	8	9	9	58.5	83.57142857	The problem ide	ntified is in	nportant, ar	nd a good r


- 2. Final project presentation All 3 instructors assess the final projects and products individually, but also share their suggestions to students in a common discussion
- 3. Reflective report Being marked using the same rubric, with standardization after marking

Challenges

- <u>Hands-on STEM in online course delivery</u> Due to the pandemic, most lessons are conducted online, which affect the STEM handson part of the course
- Students also reflected that they have difficulties working in handson group projects online
- Large workloads/efforts and a short time for product-making most students reflected that they have spent a great deal of efforts in making/improving their games, some find it challenging, especially with a short time (3 weeks in Semester 1)
- <u>Class size</u> substantial guidance to students is required for their integration of the 3 disciplines - a large class size may be more difficult to handle
- <u>Criticism to students' ideas</u> suggestions and criticism are important steps in STEM design cycles, but some students may have negative feeling towards the criticism by lecturers

Summary

Course design – integration through product-making:

- Most student groups show interdisciplinarity in their products, and some perform much better than expectation
- We found that co-guiding students on their project development is an important part of our co-teaching
- Challenges: hands-on STEM in online delivery, hands-on online group project, heavy workloads/efforts in productmaking, large class size